

FARADFLEXTM BC24 · BC16 · BC12 · BC16T

INTRODUCTION

- •Background of Buried Capacitance
- Performance Characteristics
- •PWB Manufacturing Process
- Impedance Measurement
- Noise Measurement
- Conclusion

Background

Current applications with Buried Capacitance

Hi-end computers Network servers Network routers

Demand for power distribution system with low impedance

Lower Impedance compared to discrete components

Background

Demand for thin (<25micron) Buried Capacitance

Expectation by using Thin Capacitor Material

- Improvement in electrical performance
- Reduce cost
- Reduce thickness of the board

Product Data

FARADFLEX THE NEXT GENERATION OF BURIED CAPACITANCE MATERIAL PRODUCT Data

Electrical Properties

Characteristics	Condition	Unit	BC 24	BC 16	BC 12	BC 16T
Capacitance	1GHz	pF/in	900	1500	2000	10,000
Dk	1GHz	N/A	4.6	4.6	4.6	25.0
Df	1GHz	N/A	0.012	0.012	0.012	0.014
Dielectric Thickness	Nominal	Micron Meter	24	16	12	16

Product Data

Physical Properties

Characteristics	Condition	Unit	BC 24	BC 16	BC 12	BC 16T
Тд	DMA	Celsius	200	200	200	200
Peel Strength	As received	lb/in	>6.0	>6.0	>6.0	>4.0
Young's Modules	JIS 2318	GPa	4.8	5.8	7.2	TBD
Tensile Strength	JIS 2318	MPa	180	180	180	TBD
CTE	IPC TM650	PPM	30	30	30	TBD
Breakdown	1kV/sec	V	>5000	>4000	>4000	TBD
Insulation Reliability	85C/85%/35V	hr	>1000	>1000	>1000	TBD

PWB Manufacturing Process

- 1. Pre-Clean
- 2. Dry Film lamination
- 3. Expose Image
- 4. Pattern etching (Dual sides)
- 5. Black Oxide or Alternative

B/O treated panel

PWB Manufacturing Process

- Substrates Processed at Major PCB Facilities
- Standard I/L Processing
- Results
 - 1. No loss due to jams
 - 2. No "blow out" of Clearance holes
 - 3. No separation from border pattern
 - 4. 100 % Yield at Hi-Pot (500 Volts)
 - 5. Both Vertical Racked Black Oxide and
 - Alternative Oxide used **successfully**

FARADFLEX THE NEXT GENERATION OF BURIED CAPACITANCE MATERIAL PWB Manufacturing Process

DIMENSIONAL CHANGE: COMPATIBLE WITH FR-4 CORE

PWB Manufacturing Process

B/O OR ALTERNATIVE PROCESS

THROUGH HOLE AND MICRO VIA FORMATION

PATTERNING

After processing drilling, desmear and plating

FARADFLEX THE NEXT GENERATION OF BURIED CAPACITANCE MATERIAL PWB Examples 1

4 Layer Board

FaradFlex

4 LAYER BOARD

8 LAYER BOARD with MICRO-VIA

L1

PWB Examples 2

8 Layer Board

FARADFLEX THE NEXT GENERATION OF BURIED CAPACITANCE MATERIAL PWB Examples 3

24 Layer Board

Ρ.Ρ

L22 L23 FARADFLEX CORE

L24

FaradFlex BC12

PWB Examples 4

L26

Ρ.Ρ

Ρ.Ρ

P.**P**

Ρ.Ρ

- Dielectric Withstanding Voltage : 500V Passed, No failure
- T-260 Time to Delamination : BC12 6.3min, BC24 5.2min
- Blind Via Plating Defects : No defects found
- Thermal Solder Shock 6x : No defects found
- Liquid-Liquid : BC24 4.2%(500cycle)

PWB Electrical Performance

PWB Electrical Performance (Self Z)

PWB Electrical Performance (Transfer Z)

Significant Reduction on Impedance

Data Coutesy of Sanmina-SCI Corp.

PWB Electrical Performance (Transfer Z)

Significant Reduction of EMI

MPU (40MHz) is mounted on the other side of the board.

4 LAYER BOARD

L2 L3 FARADFLEX CORE AND CONVENTIONAL CORE

- Thinner Materials for Buried Capacitance[™] are required for improved Impedance Performance at high frequency
- Our New Substrate has *excellent* electrical performance and physical properties.
- It is *compatible* with PCB processing; a truly "drop in" material.

The Product for High Speed Boards

FARADFLEXTM

In Commercial Production!

FARADFLEXTM

For more information contact:

John Andresakis VP of Strategic Technology (518) 686-8088 john.andresakis@oakmitsui.com

or visit us at www.oakmitsui.com

