

PCB Fabrication

Buried Capacitance® Technology

ELECTRONICS MANUFACTURING SERVICES

 $\ensuremath{\textcircled{O}}$ 2006 Sanmina-SCI Corporation. Sanmina-SCI is a trademark of Sanmina-SCI Corporation. All trademarks and registered trademarks are the property of their respective owners.

Buried Capacitance[®] technology

will improve your power distribution system (PDS) noise margin and improve EMC levels!

Decreased Plane Inductances & Broad Band Impedance

Reduced Size or Increased Functionality at Same Size

Lower Assembly Costs & Higher Reliability

 Fewer Components = Less Solder Joints

Buried Capacitance[®] Product Family

BC12, BC16, BC8, BC16T, BC12T are all trademarks of Oak Mitsui Technologies HK-04 is a trademark of DuPont Electronic Materials

BC[™] Material Constructions

Sanmina-SCI has 9 US Patents & 22 International patents

- Covers dielectric thicknesses: 0-4 mils (0-101 µm)
- Covers Distributed Capacitance with Power/Ground configuration (structure)
- Covers the use of nanopowders to increase Dielectric Constant (Dk)
- Covers the use of prepreg (B-stage) with Power/Ground configuration to form Distributed Capacitance
- Covers the surface treatment of foils (Double Treat and RTF) used in the formation of Buried Capacitance Laminates to promote adhesion

The IPC has acknowledged these patents in proposed Standards Patents were issued after a careful review by the patent examiners

Patents have withstood legal challenge

Global network of licensees attests to the value of these patents

Global licensed manufacturers

- 21 Licensed fabricators (52 mfg locations)
- 8 Licensed material laminators (25 mfg locations)

Approved material suppliers

Product	Supplier	Material Family			
ZBC-2000®	Matsushita	FR-170, FR-140, Megtron, FR-1755CZ			
	Hitachi Chemical	MCL-E-679, MCL-BE-67G, MCL-E-679F, MCL-679WZ			
	Isola	FR-408, FR-406, IS-140, P-96			
	Park Nelco	4105-6, 4103-13, 4105-2, N4000-6FC, 4105-11			
	Polyclad	PCL-FR-226, PCL-FR-370T, PCL-FR-370,			
		PCL-FR-370HR			
	TUC	TU722-7			
ZBC-1000™	DuPont	HK-04 (Interra™)			
	Oak Mitsui	BC24 (FaradFlex™)			
BC16™	Oak Mitsui	BC16 (FaradFlex™)			
BC12™	Oak Mitsui	BC12 (FaradFlex™)			
BC 8™	Oak Mitsui	BC-8 (FaradFlex™)			
BC12TM™	Oak Mitsui	BC12TM (FaradFlex™)			
BC16T™	Oak Mitsui	BC16T (FaradFlex™)			

Decrease power plane spacing below 0.004"

Dramatically improves high frequency capacitance

Closer adjacent power/ground planes reduces plane ΔV due to:

- Increased capacitance at lower frequencies
- Decreased inductance at higher frequencies

Provides additional Z-axis room to increase signal impedances

Representative ZBC Design Examples (Capacitor Elimination)

# Caps Before	Product	# Caps After	% Eliminated	
48	ZBC 2000	17	64 %	
48	BC 24	13	72 %	
48	BC 16	12	74 %	
48	BC 12	11	75 %	
48	BC 8	10	77 %	

Based on 1156 Pin BGA Array, 3.3 V Power Distribution, 603 Style Bypass Caps

Representative ZBC Design Examples (Plane Resonance Reduction)

With BC-24

With ZBC-2000®

High Frequency Power Distribution

• Digital power distribution is composed of a hierarchal capacitance

- Aluminum Electrolytic low frequency
- Tantalum low & mid frequency
- Ceramic high frequency
- Adjacent PCB Power Planes
- BC[™] is the broad band platform that networks all caps to power source and load.

Distributive Capacitance Behavior

Region

- a Impedance is dominated by capacitive reactance
- **b** Capacitive reactance equals inductive reactance
- c Impedance is dominated by inductive reactance
- d Plane resonance modes, affected by dielectric constant and geometry

Capacitance increases as dielectric thickness decreases

Noise improves as the impedance is reduced

BC[™] Laminate Inductive Impedance

Plane inductance is reduced as dielectric thickness decreases

Plane resonances are reduced as dielectric thickness decreases

Property	Condition Unit		ZBC-2000[®]	ZBC-1000 ^{тм}	
Dielectric Resin			FR-4	FR-4	
Dielectric				e-glass	
Reinforcement			e-glass		
Hi-Pot Test	DC Volts	Volts (DC)	500	500	
Electro-migration	85°C/85% RH (DC Volts)	Hours @ (Volts)	2000 (50)	2000 (50)	
Thermal Shock	-35°C / 125°C 400 cycles	N/A	Pass	Pass	
Peel Strength	As received	Ib/in ²	>6.0	>6.0	
Dielectric Breakdown	1 kV/sec	Volts (DC)	>2500	>2500	
UL Rating			94-V0	94-V0	
Bellcore/Telcordia Exception	TR-NWT- 000078	N/A	Granted	In progress	

Property	Units	BC24	BC16	BC12	BC8*	BC16T*	BC12TM *	HK-04
Dielectric Thickness (µ)	Nominal	24	16	12	8	16	12	25
Peel Strength	lbs/in	8	8	8	8	6	4	9.0
Dielectric Strength	KV/mil	5.3	7.3	5	5	2.8	6.2	6-7
Tensile Strength	Mpa (kpsi)	152 (22.0)	164 (23.8)	194 (28.2)	126 (18.3)	NA	110 (16.0)	>345 (>50)
Elongation	%	18.5	16.5	11.5	8.5	NA	6.0	>50
Hi-Pot Test	DC Volts	500	500	500	500	100	500	500
Thermal Shock	-35°C/125°C 400 Cycles	Pass	Pass	Pass	TBD	TBD	TBD	Pass: -65°C to 125°C- 100 Cycles
Thermal Stress (20Sec @ 288°C)	# Times	>10	>10	>10	>10	>10	>10	Pass: 10 sec @ 288°C
Electro Migration	85C/85%RH, 35VDC	>1000 Hours	>1000 Hours	>1000 Hours	>1000 Hours	>1000 Hours	>1000 Hours	1000 Hours @ 100VDC
Flammability Temp Rating	UL-94/ UL- 746	V0 130°C	V0 130°C	V0 130°C	V0 130°C	Provisional	V0 130°C	V0
Double sided core process					Sequential Lamination	Double Sided Core Process		

Plated Through Holes

ZBC-1000™

Faradflex[®] 16 µm

SANMINA-SCI

Passes Solder Shock Tests Requirements

Improve EMC performance

- Reduced PCB plane resonance effects
- Reduce need for system level shielding

Enhance high frequency power distribution

- Quieter power distribution interconnects
- Increase Distributed Capacitance
- Reduced power interconnect inductance
- Reduced usage of surface mount bypass capacitors

SANMINA-SCI

Thank You

